Search results for " Cross-validation"

showing 10 items of 10 documents

A computational approach for the assessment of executive functions in patients with obsessive-compulsive disorder

2019

Previous studies on obsessive–compulsive disorder (OCD) showed impairments in executive domains, particularly in cognitive inhibition. In this perspective, the use of virtual reality showed huge potential in the assessment of executive functions; however, unfortunately, to date, no study on the assessment of these patients took advantage of the use of virtual environments. One of the main problems faced within assessment protocols is the use of a limited number of variables and tools when tailoring a personalized program. The main aim of this study was to provide a heuristic decision tree for the future development of tailored assessment protocols. To this purpose, we conducted a study that…

050103 clinical psychologyDecision treeObsessive–compulsive disordersObsessive-compulsive disordersVirtual realityObsessive–compulsive disorderArticleVirtual realityExecutive functions03 medical and health sciences0302 clinical medicineCognitive assessmentSettore M-PSI/08 - Psicologia ClinicaSettore MED/48 -Scienze Infermierist. e Tecn. Neuro-Psichiatriche e Riabilitat.Decision treeMedicineComputational models0501 psychology and cognitive sciencesSettore MED/25 - PsichiatriaProtocol (science)Computational modelbusiness.industry05 social sciencesNeuropsychologySettore M-PSI/03 - PsicometriaCognitive assessment; Computational models; Cross-validation; Decision tree; Executive functions; Multiple errands test; Obsessive-compulsive disorders; Virtual realityCross-validationGeneral MedicineExecutive functionsTest (assessment)computational modelCognitive inhibitionexecutive functionMultiple errands testObsessive–compulsive disorders; virtual reality; multiple errands test; cognitive assessment; executive functions; computational models; decision tree; cross-validationbusiness030217 neurology & neurosurgeryCognitive psychology
researchProduct

Hybrid kernel estimates of space-time earthquake occurrence rates using the Etas model

2010

The following steps are suggested for smoothing the occurrence patterns in a clustered space–time process, in particular the data from an earthquake catalogue. First, the original data is fitted by a temporal version of the ETAS model, and the occurrence times are transformed by using the cumulative form of the fitted ETAS model. Then the transformed data (transformed times and original locations) is smoothed by a space–time kernel with bandwidth obtained by optimizing a naive likelihood cross-validation. Finally, the estimated intensity for the original data is obtained by back-transforming the estimated intensity for the transformed data. This technique is used to estimate the intensity f…

Bandwidths Parameters Cross-validation ETAS models Intensity function Kernel estimates Space-time point processes Space-time ETAS model Transformation of time.Settore SECS-S/01 - Statistica
researchProduct

A kernel support vector machine based technique for Crohn’s disease classification in human patients

2017

In this paper a new technique for classification of patients affected by Crohn’s disease (CD) is proposed. The proposed technique is based on a Kernel Support Vector Machine (KSVM) and it adopts a Stratified K-Fold Cross-Validation strategy to enhance the KSVM classifier reliability. Traditional manual classification methods require radiological expertise and they usually are very time-consuming. Accordingly to three expert radiologists, a dataset composed of 300 patients has been selected for KSVM training and validation. Each patient was codified by 22 extracted qualitative features and classified as Positive or Negative as the related histological specimen result showed the CD. The eff…

Computer sciencebusiness.industryKernel support vector machineHuman patientK-fold cross-validation020206 networking & telecommunicationsPattern recognition02 engineering and technologyPredictive value030218 nuclear medicine & medical imagingSupport vector machine03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringClassification methodsCrohn disease classificationArtificial intelligencebusinessClassifier (UML)
researchProduct

Evaluation of a Support Vector Machine Based Method for Crohn’s Disease Classification

2019

Crohn’s disease (CD) is a chronic, disabling inflammatory bowel disease that affects millions of people worldwide. CD diagnosis is a challenging issue that involves a combination of radiological, endoscopic, histological, and laboratory investigations. Medical imaging plays an important role in the clinical evaluation of CD. Enterography magnetic resonance imaging (E-MRI) has been proven to be a useful diagnostic tool for disease activity assessment. However, the manual classification process by expert radiologists is time-consuming and expensive. This paper proposes the evaluation of an automatic Support Vector Machine (SVM) based supervised learning method for CD classification. A real E-…

Crohn's diseasemedicine.diagnostic_testComputer sciencebusiness.industryFeature vectorFeature extractionSupervised learningMagnetic resonance imagingPattern recognitionmedicine.diseaseCrohn’s disease classification Feature extraction Feature reduction K-fold cross-validation Supervised learning Support vector machinesSupport vector machinemedicineMedical imagingArtificial intelligencebusinessReliability (statistics)
researchProduct

A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility.

2020

Land subsidence (LS) is a significant problem that can cause loss of life, damage property, and disrupt local economies. The Semnan Plain is an important part of Iran, where LS is a major problem for sustainable development and management. The plain represents the changes occurring in 40% of the country. We introduce a novel-ensemble intelligence approach (called ANN-bagging) that uses bagging as a meta- or ensemble-classifier of an artificial neural network (ANN) to predict LS spatially on the Semnan Plain in Semnan Province, Iran. The ensemble model's goodness-of-fit (to training data) and prediction accuracy (of the validation data) are compared to benchmarks set by ANN-bagging. A total …

Environmental Engineering010504 meteorology & atmospheric sciencesArtificial neural networkEnsemble forecastingElevationComputational intelligenceK-fold cross-validation (CV)Land cover010501 environmental sciences01 natural sciencesPollutionRandom forestSemnan PlainStatisticsDrawdown (hydrology)Land-subsidence susceptibilityEnvironmental ChemistryEnsemble methodWaste Management and DisposalGroundwaterEnvironmental Sciences0105 earth and related environmental sciencesMathematics
researchProduct

A Novel System for Multi-level Crohn’s Disease Classification and Grading Based on a Multiclass Support Vector Machine

2020

Crohn’s disease (CD) is a chronic inflammatory condition of the gastrointestinal tract that can highly alter patient’s quality of life. Diagnostic imaging, such as Enterography Magnetic Resonance Imaging (E-MRI), provides crucial information for CD activity assessment. Automatic learning methods play a fundamental role in the classification of CD and allow to avoid the long and expensive manual classification process by radiologists. This paper presents a novel classification method that uses a multiclass Support Vector Machine (SVM) based on a Radial Basis Function (RBF) kernel for the grading of CD inflammatory activity. To validate the system, we have used a dataset composed of 800 E-MRI…

Hyperparameterbusiness.industryComputer scienceMulticlass support vector machineBayesian optimizationSupervised learningFeature extractionFeature reductionCrohn’s disease multi-level classification and gradingK-fold cross-validationPattern recognitionSupport vector machineRadial basis function kernelMedical imagingFeature extractionArtificial intelligencebusinessClassifier (UML)Supervised learningBayesian optimization
researchProduct

A non-parametric segmentation methodology for oral videocapillaroscopic images

2014

We aim to describe a new non-parametric methodology to support the clinician during the diagnostic process of oral videocapillaroscopy to evaluate peripheral microcirculation. Our methodology, mainly based on wavelet analysis and mathematical morphology to preprocess the images, segments them by minimizing the within-class luminosity variance of both capillaries and background. Experiments were carried out on a set of real microphotographs to validate this approach versus handmade segmentations provided by physicians. By using a leave-one-patient-out approach, we pointed out that our methodology is robust, according to precision-recall criteria (average precision and recall are equal to 0.9…

Jaccard indexComputer scienceHealth InformaticsWavelet analysisMathematical morphologyStandard deviationCross-validationOral videocapillaroscopyWaveletImage Processing Computer-AssistedHumansSegmentationComputer visionMouthSettore INF/01 - Informaticabusiness.industryMicrocirculationNonparametric statisticsReproducibility of ResultsModels TheoreticalCapillariesComputer Science ApplicationsMathematical morphologyLeave-one-out cross-validationArtificial intelligencebusinessPrecision and recallNon-parametric image segmentationAlgorithmsSoftware
researchProduct

A computationally fast alternative to cross-validation in penalized Gaussian graphical models

2015

We study the problem of selection of regularization parameter in penalized Gaussian graphical models. When the goal is to obtain the model with good predicting power, cross validation is the gold standard. We present a new estimator of Kullback-Leibler loss in Gaussian Graphical model which provides a computationally fast alternative to cross-validation. The estimator is obtained by approximating leave-one-out-cross validation. Our approach is demonstrated on simulated data sets for various types of graphs. The proposed formula exhibits superior performance, especially in the typical small sample size scenario, compared to other available alternatives to cross validation, such as Akaike's i…

Statistics and ProbabilityFOS: Computer and information sciencesGaussianInformation CriteriaCross-validationMethodology (stat.ME)symbols.namesakeBayesian information criterionStatisticsPenalized estimationGeneralized approximate cross-validationGraphical modelSDG 7 - Affordable and Clean EnergyStatistics - MethodologyMathematics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyKullback-Leibler loApplied MathematicsEstimatorCross-validationGaussian graphical modelSample size determinationModeling and SimulationsymbolsInformation criteriaStatistics Probability and UncertaintyAkaike information criterionSettore SECS-S/01 - StatisticaAlgorithm
researchProduct

Confidence bands for Horvitz-Thompson estimators using sampled noisy functional data

2013

When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function. Assuming functional data are collected from a finite population according to a probabilistic sampling scheme, with the measurements being discrete in time and noisy, we propose to first smooth the sampled trajectories with local polynomials and then estimate the mean function with a Horvitz-Thompson estimator. Under mild conditions on the population size, observation times, regularity of the trajectories, sampling scheme, and smoothing bandwidth, we prove a Central Limit theorem in the space of …

Statistics and ProbabilityFOS: Computer and information sciencesmaximal inequalitiesCovariance functionCLTPopulationSurvey samplingweighted cross-validationMathematics - Statistics TheoryStatistics Theory (math.ST)Methodology (stat.ME)symbols.namesakeFOS: Mathematicssurvey samplingeducationGaussian processfunctional dataStatistics - Methodologysuprema of Gaussian processesMathematicsCentral limit theoremeducation.field_of_studySampling (statistics)Estimatorspace of continuous functionssymbolslocal polynomial smoothingAlgorithmSmoothing
researchProduct

Normal and Abnormal Tissue Classification in Positron Emission Tomography Oncological Studies

2018

Positron Emission Tomography (PET) imaging is increasingly used in radiotherapy environment as well as for staging and assessing treatment response. The ability to classify PET tissues, as normal versus abnormal tissues, is crucial for medical analysis and interpretation. For this reason, a system for classifying PET area is implemented and validated. The proposed classification is carried out using k-nearest neighbor (KNN) method with the stratified K-Fold Cross-Validation strategy to enhance the classifier reliability. A dataset of eighty oncological patients are collected for system training and validation. For every patient, lesion (abnormal tissue) and background (normal tissue around …

Treatment responsepositron emission tomographyK-nearest neighborKernel support vector machineComputer scienceNormal tissueK-Fold cross-validation030218 nuclear medicine & medical imagingk-nearest neighbors algorithmLesion03 medical and health sciences0302 clinical medicinetissue classificationmedicineRadiation treatment planningFuzzy C-Mean1707Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionimedicine.diagnostic_testbusiness.industryPattern recognitionComputer Graphics and Computer-Aided DesignPredictive valueSupport vector machineFuzzy C-MeansPositron emission tomography030220 oncology & carcinogenesisComputer Vision and Pattern RecognitionArtificial intelligencemedicine.symptombusinessPattern Recognition and Image Analysis
researchProduct